Las Matemáticas son la Reina de las Ciencias y la Teoría de Números es la Reina de las Matemáticas. (Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der Mathematik.). - Carl Friedrich Gauss

Problema 1. Demuestren que n y n+1 son números coprimos para todo $n \ge 1$.

Problema 2. Utilice las propiedades de divisibilidad de los números enteros para demostrar que las únicas soluciones para $y^2 = x(x+1)(x+2)$ con $x,y \in \mathbb{Z}$ son (0,0), (-1,0) y (-2,0). (Pista: si a y b son primos relativos y ab es un cuadrado, entonces a es un cuadrado y b es un cuadrado).

Problema 3. Encuentre todas las ternas pitagóricas (a, b, c), es decir, $a, b, c \in \mathbb{Z}$ y $a^2 + b^2 = c^2$, tales que $b^2 + c^2$ es un cuadrado perfecto. En otras palabras, encuentre todos los números enteros a, b, c, d tales que (a, b, c) y (b, c, d) sean ambos ternas pitagóricas. (Pista: puedes asumir que $y^2 = x(x+1)(x+2)$ no tiene puntos racionales distintos de (0,0), (-1,0) y (-2,0).)

Problema 4. Sea $f(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n$, con $a_i \in \mathbb{Z}$. Demuestren que si $x = \frac{p}{q} \in \mathbb{Q}$, con gcd(p,q) = 1, es una solución de f(x) = 0, entonces a_n es un múltiplo p y a_0 es un múltiplo de q.

Problema 5. Sea C la cónica definida por $x^2 - 2y^2 = 1$.

- 1. Encuentre todos los puntos racionales de C. (Pista: el punto O = (1,0) pertenece a C. Sea L(t) la línea que pasa por O y tiene pendiente $t \in \mathbb{Q}$. Entonces $L(t) \cap C$ contiene dos puntos de racionales, O y Q. Encuentren las coordenadas de Q en términos de t.)
- 2. Sea $\alpha = 1 + \sqrt{2}$. Calcule $\alpha^2 = a + b\sqrt{2}$ y $\alpha^4 = c + d\sqrt{2}$ y verifique que (a,b) y (c,d) son puntos integrales de $C: x^2 2y^2 = 1$. (Nota: de hecho, si $\alpha^{2n} = e + f\sqrt{2}$, entonces $(e,f) \in C$ y los coeficientes de α^{2n+1} son una solución de $x^2 2y^2 = -1$.)

Problema 6. Sea C/\mathbb{Q} una curva afín (plana).

1. Supongamos que C/\mathbb{Q} está dado por una ecuación de la forma

$$C: xy^{2} + ax^{2} + bxy + cy^{2} + dx + ey + f = 0.$$
 (1)

Encuentre un cambio invertible de variables que lleve la ecuación de C a una de la forma $xy^2 + gx^2 + hxy + jx + ky + l = 0$. (Pista: considere un cambio de variables $X = x + \lambda$, Y = y).

2. Supongamos que C'/\mathbb{Q} está dado por una ecuación de la forma

$$C': xy^2 + ax^2 + bxy + cx + dy + e = 0.$$
 (2)

Encuentre un cambio invertible de variables que lleve la ecuación de C' a una de la forma $y^2 + \alpha xy + \beta y = x^3 + \gamma x^2 + \delta x + \eta$. (Pista: multiplica (2) por x y considera el cambio de las variables X = x y Y = xy. Asegúrate de que, al final, los coeficientes de y^2 y x^3 equivalen a 1.)

3. Supongamos que C''/\mathbb{Q} es una curva dada por una ecuación de la forma

$$C'': y^2 + axy + by = x^3 + cx^2 + dx + e.$$
(3)

Encuentre un cambio invertible de variables que lleve la ecuación de C'' a una de la forma $y^2 = x^3 + Ax + B$. (Pista: hágalo en dos pasos. Primero elimine los términos xy e y. Luego elimine el término x^2).

4. Sea $E/\mathbb{Q}: y^2+43xy-210y=x^3-210x^2$. Encuentre un cambio invertible de variables que lleve la ecuación de E a una de la forma $y^2=x^3+Ax+B$.

Problema 7. Sean C y E curvas definidas, respectivamente, por $C: V^2 = U^4 + 1$ y $E: y^2 = x^3 - 4x$. Sea ψ la función definido por

$$\psi(U,V) = \left(\frac{2(V+1)}{U^2}, \frac{4(V+1)}{U^3}\right).$$

- 1. Demuestre que si $U \neq 0$ y $(U, V) \in C(\mathbb{Q})$, entonces $\psi(U, V) \in E(\mathbb{Q})$.
- 2. Encuentra una función inversa para ψ ; es decir, encuentre $\varphi: E \to C$ tal que $\varphi(\psi(U, V)) = (U, V)$.

A continuación, trabajamos en coordenadas proyectivas. Sea $C:W^2V^2=U^4+W^4$ y $E:zy^2=x^3-4xz^2$.

- (3) Escribe la definición de ψ en coordenadas proyectivas; es decir, ¿qué es $\psi([U, V, W])$?
- (4) Demuestre que $\psi([0,1,1]) = [0,1,0] = \mathcal{O}$.
- (5) Demuestre que $\psi([0, -1, 1]) = [0, 0, 1]$. (Pista: Demuestre que $\psi([U, V, W]) = [2U^2, 4UW, W(V W)]$.)

Problema 8. Utilice SageMath (también llamado CoCalc) o Magma (o otro programa) para resolver los siguientes problemas:

- 1. Encuentre 3Q, donde $E: y^2 = x^3 25x$ y Q = (-4, 6). Usa 3Q para encontrar un nuevo triángulo rectángulo con lados racionales y un área igual a 5.
- 2. Sea $y^2 = x(x+5)(x+10)$ y P = (-9,6). Encuentre nP para $n = 1, \ldots, 12$. Compare las coordenadas x de nP con la lista dada durante el curso y escriba los siguientes tres números que pertenecen a la lista.

Problema 9. Sea E/\mathbb{Q} una curva elíptica dada por una ecuación de Weierstrass de la forma $y^2 = f(x)$, donde $f(x) \in \mathbb{Z}[x]$ es un polinomio cúbico mónico con raíces distintas (sobre \mathbb{C}).

- 1. Demuestre que $P=(x,y)\in E$ es un punto de torsión de orden exacto 2 si y solo si y=0 y f(x)=0.
- 2. Sea $E(\mathbb{Q})[2]$ el subgrupo de $E(\mathbb{Q})$ formado por aquellos puntos racionales $P \in E(\mathbb{Q})$ tales que $2P = \mathcal{O}$. Demuestre que el tamaño de $E(\mathbb{Q})[2]$ puede ser 1, 2 o 4.
- 3. Da ejemplos de tres curvas elípticas definidas sobre \mathbb{Q} donde el tamaño de $E(\mathbb{Q})[2]$ es 1, 2 y 4, respectivamente.

Problema 10. Sea $E_t: y^2 + (1-t)xy - ty = x^3 - tx^2$ con $t \in \mathbb{Q}$ y $\Delta_t = t^5(t^2 - 11t - 1) \neq 0$. Cada curva E_t tiene un subgrupo isomorfo a $\mathbb{Z}/5\mathbb{Z}$. Utilice SageMath o Magma para encontrar curvas elípticas con torsión $\mathbb{Z}/5\mathbb{Z}$ y rango 0, 1 y 2. Además, intente encontrar una curva elíptica E_t con rango r, lo más alto posible. (Nota: el rango más alto conocido para una curva elíptica con torsión $\mathbb{Z}/5\mathbb{Z}$ es 9, descubierto por Klagsburn en 2020.)

Problema 11. Sea $p \ge 2$ un primo y $E_p : y^2 = x^3 + p^2$. Demuestre que no existe un punto de torsión $P \in E_p(\mathbb{Q})$ con y(P) igual a

$$y = \pm 1, \ \pm p^2, \ \pm 3p, \ \pm 3p^2, \ o \ \pm 3.$$

Demuestre que Q=(0,p) es un punto de torsión de orden exacto 3. Concluya que $\{\mathcal{O},Q,2Q\}$ son los únicos puntos de torsión en $E_p(\mathbb{Q})$. (Nota: para p=3, el punto $(-2,1)\in E_3(\mathbb{Q})$. Demuestre que no es un punto de torsión.)

Problema 12. 1. Primero demuestre que si f(x) es un polinomio, f'(x) es su derivada, y $f(\delta) = f'(\delta) = 0$, entonces f(x) tiene una raíz doble en δ .

- 2. Demuestre que si $y^2 = f(x)$ es singular, donde $f(x) \in K[x]$ es un polinomio cúbico mónico, entonces la singularidad debe ocurrir en $(\delta, 0)$, donde δ es una raíz de f(x).
- 3. Demuestre que $(\delta, 0)$ es singular si y solo si δ es una raíz doble de f(x). Por lo tanto D = 0 si y sólo si E es singular.

Problema 13. Sea $E/\mathbb{Q}: y^2 = x^3 + 3$. Encuentre todos los puntos de $\widetilde{E}(\mathbb{F}_7)$ y verifique que N_7 satisface la cota de Hasse.

Problema 14. Sea E/\mathbb{Q} : $y^2 = x^3 + Ax + B$ y sea $p \geq 3$ un primo de mala reducción para E/\mathbb{Q} . Demuestre que $E(\mathbb{F}_p)$ tiene un punto singular único.

Problema 15. Sea $E: y^2 = x^3 - 10081x$. Utilice SageMath o Magma para encontrar un conjunto mínimo de generadores para el subgrupo que abarca todos estos puntos en E:

$$(0,0), (-100,90), \left(\frac{10081}{100}, \frac{90729}{1000}\right), (-17,408)$$

$$\left(\frac{907137}{6889}, -\frac{559000596}{571787}\right), \left(\frac{1681}{16}, \frac{20295}{64}\right), \left(\frac{833}{4}, \frac{21063}{8}\right)$$

$$\left(-\frac{161296}{1681}, \frac{19960380}{68921}\right), \left(-\frac{6790208}{168921}, -\frac{40498852616}{69426531}\right).$$

(Pista: use un teorema del curso para determinar el rango de E/\mathbb{Q} .)

Problema 16. Sea $E: y^2 = x^3 + Ax + B$ una curva elíptica con $A, B \in \mathbb{Q}$, y supongamos $P = (x_0, y_0)$ es un punto en E, con $y_0 \neq 0$.

1. Demuestre que la coordenada x de 2P está dada por

$$x(2P) = \frac{x_0^4 - 2Ax_0^2 - 8Bx_0 + A^2}{4y_0^2}.$$

2. Encuentra una fórmula para y(2P) en términos de x_0 y y_0 .

Problema 17. La curva $E/\mathbb{Q}: y^2 = x^3 - 157^2x$ tiene un punto racional Q con coordenada x = x(Q) dada por

$$x = \left(\frac{224403517704336969924557513090674863160948472041}{17824664537857719176051070357934327140032961660}\right)^{2}.$$

Demuestre que existe un punto $P \in E(\mathbb{Q})$ tal que 2P = Q. Encuentra las coordenadas de P. (Sugerencia: use SageMath o Magma y haga el ejercicio 16.)

Problema 18. Sea $E: y^2 = (x-e_1)(x-e_2)(x-e_3)$ con $e_i \in \mathbb{Q}$, distinto, y tal que $e_1+e_2+e_3=0$. Además, supongamos que $e_1-e_2=n^2$ y $e_1-e_3=m^2$ son cuadrados. Este ejercicio muestra que, bajo estos supuestos, existe un punto $P=(x_0,y_0)$ tal que $2P=(e_1,0)$, es decir, P es un punto de orden exacto 4.

- 1. Demuestre que $e_1 = \frac{n^2 + m^2}{3}$, $e_2 = \frac{m^2 2n^2}{3}$, $e_3 = \frac{n^2 2m^2}{3}$.
- 2. Encuentre A y B, en términos de n y m, tales que $x^3 + Ax + B = (x e_1)(x e_2)(x e_3)$. (Pista: SageMath o Magma pueden ser de gran ayuda aquí).

- 3. Sea $p(x) = x^4 2Ax^2 8Bx + A^2 4(x^3 + Ax + B)e_1$. Demuestre que $p(x_0) = 0$ si y solo si $x(2P) = e_1$, y por lo tanto $2P = (e_1, 0)$. (Pista: utilice el ejercicio 16.)
- 4. Expresa todos los coeficientes de p(x) en términos de n y m. (Sugerencia: use SageMath o Magma).
- 5. Factorizar p(x) para $(n, m) = (3, 6), (3, 12), (9, 12), \dots$
- 6. Supongo que $p(x) = (x-a)^2(x-b)^2$ para algunos a y b. Exprese todos los coeficientes de p(x) en términos de a y b.
- 7. Finalmente, compare los coeficientes de p(x) en términos de a, b y n, m y encuentre las raíces de p(x) en términos de n, m. (Pista: compare primero el coeficiente de x^3 y luego el coeficiente de x^2 .)
- 8. Escribe $P = (x_0, y_0)$ en términos de n y m.

Problema 19. Sean e_1, e_2, e_3 tres números enteros distintos. Demuestre que $\Delta = (e_1 - e_2)(e_2 - e_3)(e_1 - e_3)$ siempre es par.

Problema 20. En este ejercicio estudiamos la estructura del cociente G/2G, donde G es un grupo abeliano finito.

- 1. Se
a $p\geq 2$ un primo y sea $G=\mathbb{Z}/p^e\mathbb{Z},$ con
 $e\geq 1.$ Demuestre que G/2G es trivial si y sólo si
 p>2.
- 2. Demuestre que, si $G = \mathbb{Z}/2^e\mathbb{Z}$ y $e \geq 1$, entonces $G/2G \cong \mathbb{Z}/2\mathbb{Z}$.
- 3. Finalmente, sea G un grupo abeliano finito arbitrario. Definimos $G[2^{\infty}]$ como la componente primaria 2 de G, es decir,

$$G[2^{\infty}] = \{g \in G : 2^n \cdot g = 0 \text{ para algunos } n \ge 1\}.$$

En otras palabras, $G[2^{\infty}]$ es el subgrupo de G formado por aquellos elementos de G cuyo orden es una potencia de 2. Pruebe que

$$G[2^{\infty}] \cong \mathbb{Z}/2^{e_1}\mathbb{Z} \oplus \mathbb{Z}/2^{e_2}\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/2^{e_r}\mathbb{Z}$$

para algunos $r \ge 0$ y $e_i \ge 1$ (aquí r = 0 significa que $G[2^{\infty}]$ es trivial). Demuestre también que $G/2G \cong (\mathbb{Z}/2\mathbb{Z})^r$.

Problema 21. Demuestre que el espacio

$$C: \begin{cases} 2Y^2 - X^2 = 34, \\ Y^2 - Z^2 = 34 \end{cases}$$

no tiene soluciones racionales con $X,Y,Z\in\mathbb{Q}$. (Pista: modifique el sistema para que no haya potencias de 2 en ninguno de los denominadores, luego trabaje en módulo 8.)

Problema 22. Para las siguientes curvas elípticas, utilice el método de 2-descenso para encontrar la rango de E/\mathbb{Q} y generadores de $E(\mathbb{Q})/2E(\mathbb{Q})$.

- 1. $E: y^2 = x^3 14931x + 220590$.
- 2. $E: y^2 = x^3 x^2 6x$.
- 3. $E: u^2 = x^3 37636x$.

4. $E: y^2 = x^3 - 962x^2 + 148417x$.

Problema 23. Encuentre el rango y los generadores de los puntos racionales en la curva elíptica $y^2 = x(x+5)(x+10)$.

Problema 24. (Curvas elípticas con rango no trivial). El objetivo aquí es una forma sistemática de encontrar curvas de rango al menos $r \geq 0$ sin usar tablas de curvas elípticas:

- 1. (Fácil) Encuentre 3 curvas elípticas no isomorfas sobre \mathbb{Q} con rango ≥ 2 . Debe demostrar que el rango es de al menos 2. (Para mostrar independencia lineal, puede usar SageMath o Magma para calcular la matriz de altura).
- 2. (Aceptable) Encuentre 3 curvas elípticas no isomorfas sobre \mathbb{Q} con rango ≥ 3 .
- 3. (Dificultad media) Encuentre 3 curvas elípticas no isomorfas sobre \mathbb{Q} con rango ≥ 6 . Si es así, entonces probablemente puedas encontrar curvas de rango de $3 \geq 8$ también.
- 4. (Significantemente más difícil) Encuentre 3 elíptica no isomorfa curvas sobre $\mathbb Q$ de rango ≥ 10 .
- 5. (¡Serías famoso!) Encuentre una curva elíptica sobre \mathbb{Q} de rango ≥ 29 .

Problema 25. Sea E una curva elíptica y supongamos que las imágenes de los puntos

$$P_1, P_2, \ldots, P_n \in E(\mathbb{Q})$$

en $E(\mathbb{Q})/2E(\mathbb{Q})$ genera el grupo $E(\mathbb{Q})/2E(\mathbb{Q})$. Sea G el subgrupo de $E(\mathbb{Q})$ generado por P_1, P_2, \ldots, P_n .

- 1. Demuestre que el índice de G en $E(\mathbb{Q})$ es finito, es decir, el grupo cociente $E(\mathbb{Q})/G$ es finito
- 2. Demuestre que, dependiendo de la elección de los generadores $\{P_i\}$ del cociente $E(\mathbb{Q})/2E(\mathbb{Q})$, el tamaño de $E(\mathbb{Q})/G$ puede ser arbitrariamente grande.

Problema 26. El último teorema de Fermat muestra que $x^3 + y^3 = z^3$ no tiene soluciones enteras con $xyz \neq 0$. Encuentre el primer $d \geq 1$ tal que $x^3 + y^3 = dz^3$ tenga infinitas soluciones no triviales, encuentre un generador para las soluciones y escriba algunos ejemplos.

Problema 27. Encuentre la solución mas sencilla con números enteros $a,b,c\in\mathbb{Z}$ tales que

$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} = 4.$$

Problema 28. Encuentre la solución mas sencilla con números naturales $a, b, c \in \mathbb{N}$ tales que

$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} = 4.$$

Problema 29. Sea E la curva $y^2 = x^3 - 2$ definida sobre \mathbb{F}_{17} , y sea P = (3,5). ¿Puedes resolver el problema de logaritmo discreto de curva elíptica $x \cdot P = (13,11)$? En otras palabras, encuentre un número entero $x \ge 1$ tal que $x \cdot P = (13,11)$ en $E(\mathbb{F}_{17})$.

Problema 30. Sea E la curva $y^2 = x^3 - 2$ definida sobre \mathbb{F}_{103} , y sea P = (3, 5).

- 1. Demuestre que el orden de P en $E(\mathbb{F}_{103})$ es 91.
- 2. Resuelve el problema de logaritmo discreto de curva elíptica $x \cdot P = (102, 93)$ en $E(\mathbb{F}_{103})$.

3. Demuestre que P es un generador de $E(\mathbb{F}_{103})$, es decir, si $Q \in E(\mathbb{F}_{103})$, entonces el problema de logaritmo discreto de curva elíptica $x \cdot P = Q$ siempre tiene solución.

(Sugerencia: utilice una computadora y el software Magma o SageMath.)

Problema 31. Sea p = 541 (que es un primo) y sea E la curva elíptica $y^2 = x^3 + x + 1$ definida sobre \mathbb{F}_{541} . Sea P = (72, 70) en $E(\mathbb{F}_{541})$. La siguiente es una lista de los múltiplos $n \cdot P$ para $1 \le n \le 59$, en orden:

```
(72,70), (424,71), (9,110), (338,159), (255,123), \\ (161,528), (147,468), (168,416), (480,353), (454,92), \\ (360,174), (264,41), (152,438), (468,56), (437,44), \\ (68,447), (459,293), (115,326), (328,507), (278,318), \\ (113,117), (534,456), (307,277), (1,57,1), (491,440), \\ (107,249), (465,115), (67,517), (301,61), (301,480), \\ (67,24), (465,426), (107,292), (491,101), (1,484), \\ (307,264), (534,85), (113,424), (278,223), (328,34), \\ (115,215), (459,248), (68,94), (437,497), (468,485), \\ (152,103), (264,500), (360,367,1), (454,449), (480,188), \\ (168,125), (147,73), (161,13), (255,418), (338,382), \\ (9,431), (424,470), (72,471), (0:1:0), \\ \end{cases}
```

donde (0:1:0) es \mathcal{O} , el punto en el infinito. En otras palabras, $P=(72,70),\,2P=(424,71),\,3P=(9,110),\,...,\,6P=(161,528),$ etc.

- 1. Verifica que el orden de P en $E(\mathbb{F}_{541})$ sea 59.
- 2. Rey y Finn quieren establecer una curva elíptica de intercambio de claves Diffie-Hellman con p=541 y E y P como se indicó anteriormente. Rey elige a=10 como su número entero secreto. ¿Qué punto A debería enviar Rey a Finn?
- 3. A continuación, Rey recibe B=(459,293) de Finn. Determina el punto secreto que comparten Rey y Finn.
- 4. El general Hux intercepta una comunicación entre Rey y Finn (no la de las partes (2) y (3), pero usando los mismos p, E y P. Hux ahora sabe que Rey envió A=(534,456) a Finn, y Finn envió B=(255,123) a Rey. Explica cómo Hux ahora puede encontrar el punto secreto que comparten Rey y Finn.